THEORETICAL FOUNDATIONS OF
VLSI DESIGN

Edited by

K. McEVOY
University of Leeds
andJ.V. TUCKER

University College of Swansea

The right of the
Universil Cambridge
e

CAMBRIDGE UNIVERSITY PRESS
Cambridge

New York Port Chester Melbourne Sydney



Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

40 West 20th Street, New York, NY 10011, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1990

First published 1990

Printed in Great Britain at the University Press, Cambridge

Library of Congress cataloguing in publication data available

British Library cataloguing in publication data available

ISBN 0 521 36631 3



Contents

List of contributors vii
Preface
X
Introduction
1 Theoretical foundations of hardware design
K. McEvoy and J.V. Tucker 1
Part 1 Formal methods and verification

2 A mechanized proof of correctness of a simple counter

A. Cohn and M. Gordon 65
3 A formal model for the hierarchical design of synchronous and systolic algorithms

K. McEvoy 97
4 Verification of a systolic algorithm in process algebra

W. P. Weijland 139

Part 2 Theory and methodology of design
5 Formal specification of a digital correlator

N.A. Harman and J.V. Tucker 161
6 Describing and reasoning about circuits using relations

M. Sheeran 263
7 The synthesis of VLSI signal processors: theory and example

H.C.Yung 299

Part 3 Methods of circuits and complexity theory

8 The prioritiser experiment: estimation and measurement of computation
time in VLSI
PM.Dew, E. King, J.V. Tucker and A. Williams 347
9 Superpolynomial lower bounds on monotone network complexity
P.E. Dunne 403



1 Theoretical foundations of hardware design

K. McEVOY AND J. V. TUCKER

1 INTRODUCTION

The specification, design, construction, evaluation and maintenance of computing
systems involve significant theoretical problems that are common to hardware and
software. Some of these problems are long standing, although they change in their
form, difficulty and importance as technologies for the manufacture of digital systems
change. For example, theoretical areas addressed in this volume about hardware
include

models of computation and semantics,
computational complexity,
methodology of design,

specification methods,

design and synthesis, and

verification methods and tools;

and the material presented is intimately related to material about software. It is
interesting to attempt a comparison of theoretical problems of interest in these areas
in the decades 1960-69 and 1980-89. Plus ¢a change, plus c’est la méme chose?

Of course, the latest technologies permit the manufacture of larger digital systems
at smaller cost. To enlarge the scope of digital computation in the world’s work it is
necessary to enlarge the scope of the design process. This involves the development
of the areas listed above, and the related development of tools for CAD and CIM.

Most importantly, it involves the unification of the study of hardware and software.
For example, a fundamental problem in hardware design is to make hardware that
is independent of specific fabricating technologies. This complements a fundamental
problem in software design — to make software that is independent of specific hardware
(i.e., machines and peripherals). Such common problems are tackled by modelling and
abstraction, using common design concepts and formal tools which are characteristic
of computer science.



2 McEvoy & Tucker — Theoretical foundations of hardware design

This volume joins a series of many-authored compendia and proceedings that record
progress in the development of a comprehensive theory of VLSI computation and
design. For instance, we have in mind Kung, Sproull & Steel [1981], Milne & Sub-
rahmanyam [1986], Moore, McCabe & Urquhart [1987], Fogelman Soulie, Robert &
Tchuente [1987], Makedon et al. [1986], Birtwhistle & Subrahmanyam [1988], Milne
[1988] and Reif [1988]. In addition, there is the textbook Ullman [1984].

In this introduction to the volume we will examine some general ideas underlying
a comprehensive theory of VLSI computation and design, and we will perform the
useful task of attempting a literature survey.

At this stage in its development it is possible to see the subject only as a broad
collection of interrelated problems and techniques. The theory of hardware is still
limited by the theory of software. Perhaps the theoretical foundations are shallow,
but they are also broad, and in each of the areas listed above there are significant
and promising achievements. We hope that this volume encourages the reader to help
contribute to improving the situation.

2 COMPUTER SCIENCE AND HARDWARE

We will make explicit certain ideas and problems that underlie the development of
a comprehensive theory of computation and design for hardware within computer
science.

2.1 What is computer science?
Computer science is about computations and computers. It concerns

(i) the invention and analysis of algorithms,
(ii) the design and development of programs and programming languages, and
(iii) the design and construction of computer systems, including hardware, for
implementing programs and programming languages.

It is with (iii) that we are concerned in this volume, though the subjects are intimately
related. A fundamental point is that computer science aims to abstract from physical
devices and view its machines through the formalisms used for their operation and
programming. This emphasis on formalisms — software — gives computer science
some coherence and continuity in the face of changes in the physical technologies of
hardware construction.

2.2 What is hardware?
We may use the term hardware to mean a physical system that implements a program
or an algorithm. Other synonyms in use are machine, device, computer, and digital



1.2 Computer science and hardware 3

system. (Notice that only the last two terms are specific to computation.) Examples
of hardware include the primitive calculators of Leibnitz and Pascal, the difference
and analytical engines of Babbage, the devices made by electromechanical systems,
and the application-specific devices and general computers manufactured by silicon
technologies.

Whether old or new, specific or general, the essential feature of hardware is that, in
realising or embodying the algorithm, its purpose is to process symbols and hence
information. It is difficult to formulate definitions that correctly distinguish the
many types of machines that process physical entities (e.g., a loom) from those that
process information (e.g., a gauge). All physical systems process physical quantities:
we impose on the physical system our framework of abstract information to obtain
a digital or analogue computer. It is not easy to resolve but clearly the discussion
underlies the distinct points of view of hardware possessed by the computer scientist
and, in our time, the electronic engineer.

To design a computer we must design to physical and algorithmic specifications. In
practice, the physical characteristics of technologies influence considerably our think-
ing about algorithms. For example, the von Neumann and systolic architectures
are successful because of their suitability for implementation. Although in design-
ing algorithms we are concerned with physical characteristics such as time, space or
area, these quantities are actually basic properties of the symbolism that model in
an abstract way the physical properties after which they are named. Rarely do al-
gorithm designers model these quantities more exactly, or attempt to model other
physical measures of efficiency or reliability such as energy, power consumption, com-
munication costs, operating temperatures, stress, and so on. It is remarkable that
simplifications used in work on algorithms are as useful to machine design as they
are; or, to put it another way, result in designs that can be implemented and used
at all. However, models of physical quantities such as energy, communication costs
and so on are relevant to algorithm design and will therefore join the list of basic
algorithmic concepts in due course.

2.3 The gap between hardware and software

A computing system is composed of hardware and software. The design of its hard-
ware results in a physical system that realises a set of programs of programming
languages. The design of its software results in symbolic systems that represent data
and algorithms. There is a significant gap between our physical conception of devices
and our logical conception of notations. There is a discontinuity at the bottom of
well used images of the hierarchical nature of computation, as described in Bell &
Newell [1971], for example.



4 McEvoy & Tucker — Theoretical foundations of hardware design

In software the gap is seen in the comparison of the theoretical complexity of a pro-
gram or computation and the empirical performance. Calculations based on models
at different levels of abstraction can be refined to make estimates of the number of
clock cycles required, en route to estimates of run-times in seconds that may be tested.
This distinction is seen in the specification and verification of real-time computations
(often controlling physical systems, for instance).

In hardware the gap is seen in the essential role that timing and performance play in
the many notions of specification and correctness criteria for devices. In a sense, each
model of computation for hardware design attempts to bridge, or more accurately,
hide this gap.

The distinction between physical and logical concepts in computing is intimately
related to the distinction between analogue and digital notions of computation. The
notion of analogue computation is present in technologies such as neuro-computing
(see Anderson & Rosenfield [1988]), and in any new chemical technology for image
processing. It is present in discussions about new discrete space and discrete time
models of physical and chemical systems (see Crutchfield & Kaneko [1987]). It is
fundamental to long standing discussions about the nature of simulations in physics
(see Feynman [1982]).

The gap in understanding is intimately related to the gap between mathematical mod-
els and their application in nature, which is one of enormous philosophical complexity.
It is pleasing to think that the practical motivations of computer science lead us to
technologies for hardware and software that require us to postulate borders between
physics and logic, and hence raise fundamental scientific questions immediately.

3 THEORETICAL FOUNDATIONS
In the study of algorithms, and their realisation in software and hardware, there are
certain fundamental concerns, including

models of computation,
specification,

(1)
(2)
(3) derivation and synthesis,
(4) verification,

(5) testing,

(6) maintenance.

Each specialised area of computer science — databases, theorem proving, architec-
tures, computational geometry, VLSI, and so on — is characterised by its models of



1.8 Theoretical foundations 5

computation, and their associated methods classified under (2)—(6). In particular,
each specialised area can be surveyed under these headings. .

We will discuss the literature on the theoretical foundations of VLSI computations
under the headings (1)-(4), combining (2) and (4); and we will neglect (5) and (6).
This arrangement of three subjects — models of computation, derivation and synthesis,
and specification and verification — reflects the situation as we have found it. In
preparation, we will discuss the general concepts we associate with these four topics,
independently of their relevance to hardware algorithms. The primary topic is models
of computation.

3.1 Models of computation

A model of computation codifies a means of defining and composing algorithms: it
defines data, primitive actions on data such as operations and tests, and methods
of defining families of actions that constitute computations. An algorithm specifies
families of computations. For example, the natural numbers together with their usual
operations (e.g., successor, addition, multiplication) and the methods of composition
and primitive recursion constitute a model of computation; an algorithm in this model
is a definition of a primitive recursive function.

A model should also give performance criteria to evaluate the complexity of different
algorithms. One fundamental idea is to count the number of primitive actions of the
model involved in a computation, measuring this number as a function of input data.
This method is called the unit cost criterion because each basic action is implicitly
charged a unit. Clearly this criterion is related to time taken to compute.

To define formally a model of computation we often define a language in terms of
a syntax and semantics. Conversely, a language definition incorporates a model
of computation. Practical languages are often made from several disparate (even
inconsistent) models of computation.

The theoretical purpose of a model of computation is

(i) to clarify the basic principles of a computing method,
(ii) to classify the algorithms based upon the method, and
(iii) to establish the scope and limits of computation using the method.

Thus a model allows us to determine whether or not a specification can be met by an
algorithm; and, if performance is involved, what costs are necessarily incurred. An
example of a specification that cannot be implemented is the universal function for



6 McEvoy & Tucker — Theoretical foundations of hardware design

the primitive recursive functions, which is recursive but not primitive recursive. The
performance property is recorded by lower bound theorems for performance criteria.
For example, when C.D. Thompson first devised a model for circuits (in Thompson
[1980]), he was able to prove that AT? = Q(n?log’n) for sorting n elements; in
Thompson [1983] some of the conditions on the models are relaxed, and consequently
the lower bound on sorting must be weakened to AT? = Q(n’logn).

In its origins, however, a model may have been devised for one or more of the following
purposes:

(i) to systematise algorithm development for an applications area;
(ii) to systematise algorithm development for an implementing technology;
(iii) to allow the analysis of computational properties.

For example, the systolic algorithm model satisfies (i) and (ii), supporting signal pro-
cessing and VLSI technology; and the arbitrary interleaving model of concurrency
satisfies all of (i), (ii) and (iii), supporting multiprocessing on a von Neumann com-
puter, and the analysis of non-determinism and the independence of parallel actions.

3.2 Specification

A specification of an algorithm is an independent and abstract description of prop-
erties of the algorithm, or of the problem it is intended to solve. The statements
making up a specification concern its inputs, outputs, and efficiency, for example. A
specification is intended as a record of

(i) information relevant for users of an algorithm, and
(ii) requirements relevant for designers of an algorithm.

These two uses ensure that a specification is as fundamental as the algorithm itself.
In connection with (i), specifications are used in the modelling of the task to be
accomplished by the algorithm. In connection with (ii) specifications are used in con-
firming the correctness of the algorithm by both empirical testing and mathematical
verification.

The precision in the description of a specification should be comparable with the
precision in the description of an algorithm. Precision and rigour are indispensable
in the process of algorithm design, which involves classifying properties, and their
ramifications concerning the user’s task and the designer’s resources. Formally defined
specifications complement formally defined algorithms. If specifications are machine
processable then they can be animated, transformed, tested and verified with the
assistance of computers.



1.3 Theoretical foundations 7

A theoretical distinction between the general concept of a specification and the general
concept of an algorithm is hard to draw. A specification can be very detailed, and
indistinguishable from a coding of an algorithm. This attention to detail is common
in practical work with specifications, and is an insidious problem. The point is that
a specification is of use when it is an abstract description of some properties of an
algorithm, or set of algorithms.

Given a specification method for a model of computation, important theoretical ques-
tions arise about its expressiveness:

Soundness or consistency problem Can every specification be realised by a set of
algorithms based on the model?

Adequacy problem Can every set of algorithms based on the model be defined by a
specification?

To formulate precisely and answer these questions for any specific model of computa-
tion and specification method involves considerable theoretical research. For example,
the scope and limits of the algebraic specification methods for computable data types
are surveyed in Meseguer & Goguen [1985].

An important theoretical use of specifications is in defining notions of equivalence
for algorithms. Notice that if algorithms A and A’ satisfy specification S then they
are equivalent as far as S is concerned. More generally, given a specification method
M, it is important to study the following equivalence relation on algorithms: given
algorithms A and A’ define that A is equivalent to A’ under M if, and only if, for
every specification S based on M, A satisfies S if and only if A’ satisfies S.

Nevertheless, it is useful to disconnect the study of specifications and their use from
that of algorithms. This attention to the theory of specifications is an original and
important contribution to computer science from the field of programming method-
ology. An extensive study in the context of hardware is the chapter by Harman and
Tucker contained in this volume.

3.3 Derivation
A derwation of an algorithm A from a specification S is a process of defining a
sequence

Ao, Ary . As

of algorithms in which A = A,, A, satisfies the specification, and the fransformation
or refinement of A; to A, for ¢ = 0,...,n — 1 preserves the specification S. The



8 McEvoy & Tucker — Theoretical foundations of hardware design

sequence 1is called a derivation; the transformations or refinements are said to be
specification preserving or correctness preserving, and the process is also called the
stepwise refinement or synthesis of the algorithm.

The notion of derivation is very general. Typically, a derivation arises in the solu-
tion of a problem, represented by the specification S. Here A, is some simple first
algorithm that meets S but is not satisfactory; perhaps it is inefficient, sequential
and unsuited to implementation in hardware. The transformations result in a com-
plicated last algorithm A, that is satisfactory; perhaps it is efficient, concurrent, and
readily implemented. Many notions are involved in derivations, such as top-down
design, automatic synthesis and compilation.

Among the basic concerns are
(1) transformation methods for developing algorithms for a given model of com-
putation,
(i) logical systems for formulating and proving that transformations preserve cor-
rectness,
(ili) automatic tools for processing derivations.

These concerns guide much theoretical research on models of computation, and spec-
ification and programming languages, throughout computer science. For example, in
programming methodology, the concern (ii) for correctness is analysed by refinement
calculi, such as the weakest precondition calculus described in Dijkstra [1976]; this
has led to significant theoretical understanding of the process of derivation (see Back
[1980] and Back [1981]) and its practical extension (see Back & Sere [1989], Back &
Kurki-Suonio [1988] and Chandy & Misra [1988]).

Of course, the original example of a theoretically well-founded and practically well-
developed formal derivation process is the theory of boolean algebra and its applica-
tions to circuit design.

3.4 Verification
A verification that an algorithm A meets a specification S is a process of defining a

sequence
B, P,...,P,

of statements in which P, asserts that A satisfies S, and each statement P is either
an assumption about the model of computation and specification, or the result of
deduction from statements preceding P; in the sequence. The sequence is called a
proof of correctness. A verification can be performed independently of a derivation,
although a derivation ought to determine a verification.



1.3 Theoretical foundations 9

Verification techniques must be founded upon mathematical theories which include
mathematical models of computation and specification, but they can be divided ac-
cording to the nature of the method of proof:

e informal methods, which are based on standard mathematical concepts, tech-
niques and reasoning; or

¢ formal methods, which are based on formally defined languages with associated
proof rules, and are often standard logical systems of mathematical logic.

The advantages of informal mathematical methods are that they are focussed on
the human understanding of the essential technical points in the proof, they are un-
derstandable by a wide audience of people with mathematical training, and they
are independent of specific logical and computer systems. The advantage of formal
methods is that formal specifications and proofs are machine processable, and so for-
mal proofs can be contructed, or at least checked, by computers. This is significant
for raising the standard of rigour in a verification, and for solving the large prob-
lems that arise in specifications and verifications of algorithms of practical interest.
The informal and formal methods are quite distinct but complement one another, of
course; this distinction is true of both the nature of proofs and the talents necessary
to construct them.

Currently there is renewed interest in the use of automatic theorem provers and
proof checkers in the verification of software and hardware. It is essential that these
computer systems should be based upon formally defined frameworks for doing proofs.
The formal proof framework is usually some established formal logic. Examples of
logics used in theorem proving software are

e higher order logic,

e first order logic,

¢ equational logic,

¢ temporal logic,

e Church’s type theory,

¢ Martin-Lof’s type theory.

Thus the algorithms and their specifications must be described directly, or compiled
into such a logical language. Automatic theorem proving originates in attempts to
prove theorems of mathematics and logic, and each of the above logics was first
implemented for this purpose. The first implementation of a program verifier is
reported in King [1969]. For basic historical and contemporary surveys, and source
material, see Siekmann & Wrightson [1983] and Bledsoe & Loveland [1984].



10 McEvoy & Tucker — Theoretical foundations of hardware design

Let us consider the terms theorem prover and proof checker. Strictly speaking we
imagine a theorem prover to be a system that inputs a statement and, if the statement
is true, returns a proof of the statement; if the statement is false, or cannot be proved,
the theorem prover could react in several disciplined ways — it may give a proof of
its negation, or simply reply that it cannot find a proof (it should not, of course,
search ad infinitum for a proof that does not exist). A proof checker, however, inputs
a statement and a proof of that statement, and returns information concerning the
validity of the proof.

This distinction needs further analysis. First there is the distinction between the
truth and falsity of a statement, and its provability or non-provability in a formalised
logical theory. This distinction is fundamental in mathematical logic, and is analysed
in terms of various notions of completeness and incompleteness of formal theories.

A formal theory T arises from the codification of certain properties of a model of
computation M, about which one wants to reason. The statements and proof rules of
T are true of M,. However, the theory T is more abstract and possesses a semantics
M defined by the following so-called completeness condition:

P is provable in T if, and only if, P is true of M.
Since T is true of M, by design, we expect that
P is provable in T implies P is true of M,
but that the converse can fail, namely
P is true of M, does not imply P is provable in T'.

Thus it is essential to distinguish carefully between the notions of true statements and
provable statements. For example, it can be proved using the theorems of K. Godel,
that given any formal theory designed to reason about specifications concerning al-
gorithms on the natural numbers {0,1,2,...} there are specifications and algorithms
that are true but which cannot be proved in T'.

The algorithmic notions of theorem prover and proof checker described above are
better described in terms of decision procedures. A decision procedure for provability
of statements in a theory is an algorithm that given any statement decides whether
or not the statement has a proof in the theory. For some simple theories, including
propositional calculi, there are decision procedures; however, for most basic theories



1.4 Literature survey 11

there do not exist decision procedures. For example, according to Church’s Theorem
(Church [1936]) there does not exist a decision procedure for the predicate calculus.
For any reasonable logical theory there is a semidecision procedure that given a
statement returns a proof, if one exists, but can fail to return a message if such a
proof does not exist.

A decision procedure for proofs in a theory is an algorithm that given a statement
and a proof, decides whether or not the proof is a proof of the statement in the
theory. For any reasonable logical theory, there is a decision procedure for proofs.
Interestingly, in common formulations of Floyd-Hoare logic, designed to be complete
for computations on the natural numbers, there is no decision procedure for proofs;
this is because of the use of the set of all first order statements that are true of the
natural numbers as an oracle: see Apt [1981]. The logical foundations of Floyd—Hoare
logic as seen from theorem proving are studied in Bergstra & Tucker [1984].

In using a system to prove a theorem it is to be expected that a combination of these
concepts will be needed in a process of interactive proof development. There must be
an informal proof involving a tree of lemmas, a formal theory concerning the model
of computation, and a selection of theorem provers and proof checkers that can be
used for proving lemmas and checking proofs involving lemmas.

4 LITERATURE SURVEY

In this section we offer a survey of the literature on theoretical foundations of VLSI
and hardware design. The survey is divided into three parts to reflect the nature of
the research which has been carried out in this subject. These parts concern

o the development of models of hardware devices in Section 4.1,

¢ the development of derivations in Section 4.2, and

o the development of techniques for verification of hardware devices in Section
4.3.

We hope we have been sufficiently comprehensive to give an accurate impression of
current research directly relevant to the foundations of hardware. We know there are
omissions, and expect some to be unfortunate.

4.1 Models

A large number of models of computer hardware have been presented in the literature.
Some of these have been formal models for scientific analysis, and others have been
more informal models for engineering applications. It is natural that both the form
and the properties of a model, as first presented in the literature, reflect the reason



12 McEvoy & Tucker — Theoretical foundations of hardware design

for the formulation of the model, and historically a theoretical model of hardware has
been developed for one of three reasons:

o to clarify the basic principles of a design method;
e to allow for formal specification or verification; or
e to analyse the complexity of certain problems or algorithms.

We consider, in turn, the models which fall into these three categories. Systolic
computation has, since the first use of the term in Kung & Leiserson [1979)], received
a great deal of attention, and so this subject is treated in a section of its own.

4.1.1 Models for design The earliest models of interest here are probably those devel-
oped in the late thirties, in which basic techniques of boolean algebra are applied to
the analysis of switching circuits; see Shannon [1938], Nakasima [1936] and Shestakov
[1938].Other important models used in the design of hardware and digital systems
can be surveyed by consulting some of the major texts in this field: Keister, Ritchie
& Washburn [1951] is a fascinating text, largely concerned with designing networks
of electro-mechanical switches; Flores [1963] contains a thorough treatment of com-
puter arithmetic; Harrison [1965] contains an excellent account of the mathematical
theory of switching circuits; Clare [1973] was the first text to use T. E. Osbourne’s
algorithmic state machine (ASM) notation; Hill & Peterson [1973] contains an early
application of a hardware description language (AHPL) for simulation and description
of digital systems; Mead & Conway [1980] was the first text on structured digital sys-
tems design in VLSI; Ercegovac & Lang [1985] is a good modern treatment of digital
system design which stresses the current (mainly) informal, but highly structured,
design methodologies; other interesting works include Lewin [1968|, Lewin [1977],
Mano [1979] and Winkel & Prosser [1980].

A design language uFP for regular arrays is presented in Sheeran [1983] and Sheeran
[1985]. uFP is a functional programming language (it is an adaptation of FP; Backus
[1978]) in which each construct in the language (both the primitives and the combin-
ing forms) has an associated geometric ‘layout’, so that the construction of a func-
tional program in puFP carries with it, as an immediate by-product, the construction
of a corresponding layout. In order to successfully model hardware, an operator u
to model feedback or state is added to FP. A uFP program represents a function
on streams of data. Basic functions might be full adders and nand gates, and uFP
programs are designed by applying higher order functions such as map and reduce to
these primitives. The ‘clean’ mathematical semantics of functional programs facili-
tate the design of an initial program which is correct (involving little or no use of the
p-operator); this program can then be transformed to one which is more suitable for



1.4 Literature survey 13

implementation in VLSI by the application of algebraic laws (which are proven to be
correct). The advantage of this method of design is that the set of higher order func-
tions which are available as combining forms to the designer is restricted to a small
set of simple functions which have geometric representations which are guaranteed to
produce the regular layouts which are the aim of VLSI design; arbitrary user-defined
higher-order functions are not permitted, so that, for example, spaghetti-type wiring
cannot be introduced. Also, whereas local communication is implicit, distant com-
munication must be explicitly described, thereby discouraging long communication
wires. In the chapter by Sheeran in this volume the functional nature of the language
is replaced by a relational approach. In Sheeran [1988] retiming transformations are
examined in this model. This approach to design has also been developed in Jones
& Luk [1987] and Luk & Jones [1988].

Patel, Schlag & Ercegovac [1985] have also adapted Backus’ FP to the design and
evaluation of hardware algorithms. A program in vFP is a function which maps
objects to objects, where objects are either atomic or sequences of objects (undefined
values are treated). The approach to design is that the algorithm is first specified
within vFP at a level of abstraction that is high enough to aid validation, and then
it is refined to a level at which it is easily interpreted. Next this vFP function is
mapped (by an interpreter) into an intermediate form (IF) which reflects the planar
topology of the function, and then this IF is mapped to a fixed geometry by selecting
and resolving relative position constraints (compaction). The result can be displayed
on a graphics terminal. The vFP system can estimate performance parameters for
FP programs.

Boute [1986] has developed a theory of digital systems which is based on transforma-
tional reasoning, and a functional programming style to support this reasoning. The
functional programming language SASL (Turner [1979]) is augmented with a simple
type description language, and this language is used to describe digital systems at all
levels. It is argued that for many results in the theory of digital systems, transforma-
tional reasoning is more appropriate than the standard deductive style — important
considerations here are compositionality and the flow of information in a system.

Milne [1985] presents the calculus CIRCAL as a model for circuit description and de-
sign. A CIRCAL term describes the behaviour of an agent, and terms are constructed
by applications to primitive terms of the four primitive operators of guarding, choice,
non-determinism and termination, and the two derived operators of concurrent com-
position and abstraction. CIRCAL is equipped with an acceptance semantics (which
was developed from the observational semantics of Hennessy & Milner [1980]), and a
set of laws; the laws have been proved to be sound with respect to the observational



